Preparation and Evaluation of Ammonium Adipate Solutions as Inhibitors of Shale Rock Swelling

This study aimed to evaluate the inhibitory effect of a series of ammonium adipate solutions (AASs) by using the linear expansion test, thermogravimetric analysis (TGA), and particle size distribution analysis, and to examine the underlying inhibitory mechanism. A series of AASs was prepared from ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-09, Vol.11 (9), p.1013
Hauptverfasser: Xian, Sirong, Chen, Shijun, Lian, Yubo, Du, Weichao, Song, Zhifei, Chen, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to evaluate the inhibitory effect of a series of ammonium adipate solutions (AASs) by using the linear expansion test, thermogravimetric analysis (TGA), and particle size distribution analysis, and to examine the underlying inhibitory mechanism. A series of AASs was prepared from adipic acid and amines as small-molecule inhibitors of oil shale rock swelling. They were then evaluated by the bentonite linear expansion test. The best one, namely, AAS-8 (synthesized with adipic acid and tetraethylenepentamine in a ratio of acid group to amine group of 1:2), was evaluated in a water-based drilling fluid. The linear expansion test showed that the linear expansion rate of AAS-8 was the lowest (59.61%) when the concentration was 0.1%. The evaluation of the drilling fluid revealed that AAS-8 had a strong inhibitory effect on the swelling of hydrated bentonite particles in the water-based drilling fluid and was compatible with carboxymethyl cellulose (CMC) and modified starch. The inhibition mechanism of AAS-8 was investigated using TGA and particle size distribution analysis, which demonstrated that AAS-8 might enter the clay layer and bind the clay sheets together by electrostatic adsorption and hydrogen bonding.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11091013