Sleep- and sleep deprivation-related changes of vertex auditory evoked potentials during the estrus cycle in female rats

The estrus cycle in female rodents has been shown to affect a variety of physiological functions. However, little is known about its presumably thorough effect on auditory processing during the sleep–wake cycle and sleep deprivation. Vertex auditory evoked potentials (vAEPs) were evoked by single cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-03, Vol.14 (1), p.5784-5784, Article 5784
Hauptverfasser: Tóth, Attila, Traub, Máté, Bencsik, Norbert, Détári, László, Hajnik, Tünde, Dobolyi, Arpád
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The estrus cycle in female rodents has been shown to affect a variety of physiological functions. However, little is known about its presumably thorough effect on auditory processing during the sleep–wake cycle and sleep deprivation. Vertex auditory evoked potentials (vAEPs) were evoked by single click tone stimulation and recorded during different stages of the estrus cycle and sleep deprivation performed in metestrus and proestrus in female rats. vAEPs showed a strong sleep-dependency, with the largest amplitudes present during slow wave sleep while the smallest ones during wakefulness. Higher amplitudes and longer latencies were seen in the light phase during all vigilance stages. The largest amplitudes were found during proestrus (light phase) while the shortest latencies were seen during estrus (dark phase) compared to the 2nd day diestrus baseline. High-amplitude responses without latency changes were also seen during metestrus with increased homeostatic sleep drive. More intense and faster processing of auditory information during proestrus and estrus suggesting a more effective perception of relevant environmental cues presumably in preparation for sexual receptivity. A 4-h sleep deprivation resulted in more pronounced sleep recovery in metestrus compared to proestrus without difference in delta power replacement suggesting a better tolerance of sleep deprivation in proestrus. Sleep deprivation decreased neuronal excitability and responsiveness in a similar manner both during metestrus and proestrus, suggesting that the negative consequences of sleep deprivation on auditory processing may have a limited correlation with the estrus cycle stage.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-56392-9