Synthesizing theories of human language with Bayesian program induction

Automated, data-driven construction and evaluation of scientific models and theories is a long-standing challenge in artificial intelligence. We present a framework for algorithmically synthesizing models of a basic part of human language: morpho-phonology, the system that builds word forms from sou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-08, Vol.13 (1), p.5024-5024, Article 5024
Hauptverfasser: Ellis, Kevin, Albright, Adam, Solar-Lezama, Armando, Tenenbaum, Joshua B., O’Donnell, Timothy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automated, data-driven construction and evaluation of scientific models and theories is a long-standing challenge in artificial intelligence. We present a framework for algorithmically synthesizing models of a basic part of human language: morpho-phonology, the system that builds word forms from sounds. We integrate Bayesian inference with program synthesis and representations inspired by linguistic theory and cognitive models of learning and discovery. Across 70 datasets from 58 diverse languages, our system synthesizes human-interpretable models for core aspects of each language’s morpho-phonology, sometimes approaching models posited by human linguists. Joint inference across all 70 data sets automatically synthesizes a meta-model encoding interpretable cross-language typological tendencies. Finally, the same algorithm captures few-shot learning dynamics, acquiring new morphophonological rules from just one or a few examples. These results suggest routes to more powerful machine-enabled discovery of interpretable models in linguistics and other scientific domains. Humans can infer rules for building words in a new language from a handful of examples, and linguists also can infer language patterns across related languages. Here, the authors provide an algorithm which models these grammatical abilities by synthesizing human-understandable programs for building words.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32012-w