Superior Acetone Selectivity in Gas Mixtures by Catalyst‐Filtered Chemoresistive Sensors
Acetone is a toxic air pollutant and a key breath marker for non‐invasively monitoring fat metabolism. Its routine detection in realistic gas mixtures (i.e., human breath and indoor air), however, is challenging, as low‐cost acetone sensors suffer from insufficient selectivity. Here, a compact detec...
Gespeichert in:
Veröffentlicht in: | Advanced science 2020-10, Vol.7 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acetone is a toxic air pollutant and a key breath marker for non‐invasively monitoring fat metabolism. Its routine detection in realistic gas mixtures (i.e., human breath and indoor air), however, is challenging, as low‐cost acetone sensors suffer from insufficient selectivity. Here, a compact detector for acetone sensing is introduced, having unprecedented selectivity (>250) over the most challenging interferants (e.g., alcohols, aldehydes, aromatics, isoprene, ammonia, H2, and CO). That way, acetone is quantified with fast response ( |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202001503 |