Superconformal quantum mechanics and growth of sheaf cohomology

A bstract We give a geometric interpretation for superconformal quantum mechanics defined on a hyper-Kähler cone which has an equivariant symplectic resolution. BPS states are identified with certain twisted Dolbeault cohomology classes on the resolved space and their index degeneracies can also be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-08, Vol.2023 (8), p.96-40, Article 96
Hauptverfasser: Dorey, Nick, Zhao, Boan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We give a geometric interpretation for superconformal quantum mechanics defined on a hyper-Kähler cone which has an equivariant symplectic resolution. BPS states are identified with certain twisted Dolbeault cohomology classes on the resolved space and their index degeneracies can also be related to the Euler characteristic computed in equivariant sheaf cohomology. In the special case of the Hilbert scheme of K points on ℂ 2 , we obtain a rigorous estimate for the exponential growth of the index degeneracies of BPS states as K → ∞. This growth serves as a toy model for our recently proposed duality between a seven dimensional black hole and superconformal quantum mechanics.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP08(2023)096