Fagopyrum dibotrys extract improves nonalcoholic fatty liver disease via inhibition of lipogenesis and endoplasmic reticulum stress in high-fat diet-fed mice

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, presenting a treatment challenge due to limited options. Endoplasmic reticulum (ER) stress and associated lipid metabolism disorders are main causes of NAFLD, making it important to inhibit ER stress for effective treatment. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC research notes 2024-10, Vol.17 (1), p.310-8, Article 310
Hauptverfasser: Wang, Da, Zhang, Dan, Zhu, Ziyun, Zhang, Yini, Wan, Ying, Chen, Hang, Liu, Jianjun, Ma, Lanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing, presenting a treatment challenge due to limited options. Endoplasmic reticulum (ER) stress and associated lipid metabolism disorders are main causes of NAFLD, making it important to inhibit ER stress for effective treatment. Fagopyrum dibotrys has hypolipidemic, anti-inflammatory and hepatoprotective properties, showing promise in treating NAFLD. However, its effects on ER stress in NAFLD remain unclear. This study used a high-fat diet (HFD) to establish NAFLD mouse models and supplemented with Fagopyrum dibotrys extract (FDE) to evaluate its therapeutic effect and underlying mechanisms. We showed that FDE supplementation reduced the severity of hepatic steatosis and lowered triglycerides (TG) and total cholesterol (TC) levels in NAFLD mice. At the molecular level, FDE supplementation reduced hepatic lipid deposition by downregulating lipogenic markers (SREBP-1c, SCD1) and upregulating fatty acid oxidase CPT1α expression. Additionally, FDE treatment inhibited the overexpression of ER stress markers (GRP78, CHOP, and P-EIF2α) in NAFLD mice livers, and blocked the activation of the PERK-EIF2α-CHOP pathway, demonstrating its role in maintaining ER homeostasis. Considering that activation of the PERK pathway could exacerbate lipid deposition, our findings suggest that FDE has a protective effect against hepatic steatosis in NAFLD mice by attenuating ER stress, and the potential mechanism is through inhibiting the PERK pathway.
ISSN:1756-0500
1756-0500
DOI:10.1186/s13104-024-06962-x