Compact higher-order gas-kinetic schemes with spectral-like resolution for compressible flow simulations
In this paper, a class of compact higher-order gas-kinetic schemes (GKS) with spectral-like resolution will be presented. Based on the high-order gas evolution model, both the flux function and conservative flow variables in GKS can be evaluated explicitly from the time-accurate gas distribution fun...
Gespeichert in:
Veröffentlicht in: | Advances in Aerodynamics 2019-06, Vol.1 (1), p.13-34, Article 13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a class of compact higher-order gas-kinetic schemes (GKS) with spectral-like resolution will be presented. Based on the high-order gas evolution model, both the flux function and conservative flow variables in GKS can be evaluated explicitly from the time-accurate gas distribution function at a cell interface. As a result, inside each control volume both the cell-averaged flow variables and their cell-averaged gradients can be updated within each time step. The flow variable update and slope update are coming from the same physical solution at the cell interface. This strategy needs time accurate solution at a cell interface, which cannot be achieved by the Riemann problem based flow solvers, even though they can also provide the interface flux functions and interface flow variables. Instead, in order to update the slopes in the Riemann-solver based schemes, such as HWENO, there are additional governing equations for slopes or equivalent degrees of freedom inside each cell. In GKS, only a single time accurate gas evolution model is needed at the cell interface for updating cell averaged flow variables through interface fluxes and updating the cell averaged slopes through the interface flow variables. Based on both cell averaged values and their slopes, compact 6th-order and 8th-order linear and nonlinear reconstructions can be developed. As analyzed in this paper, the local linear compact reconstruction without limiter can achieve a spectral-like resolution at large wavenumber than the well-established compact scheme of Lele with globally coupled flow variables and their derivatives. For nonlinear gas dynamic evolution, in order to avoid spurious oscillation in discontinuous region, the above compact linear reconstruction from the symmetric stencil can be divided into sub-stencils and apply a biased nonlinear WENO-Z reconstruction. Consequently discontinuous solutions can be captured through the 6th-order and 8th-order compact WENO-type nonlinear reconstruction. In GKS, the time evolution solution of the gas distribution function at a cell interface is based on an integral solution of the kinetic model equation, which covers a physical process from an initial non-equilibrium state to a final equilibrium one. Since the initial non-equilibrium state is obtained based on the nonlinear WENO-Z reconstruction, and the equilibrium state is basically constructed from the linear symmetric reconstruction, the GKS evolution models unifies the nonlinear |
---|---|
ISSN: | 2524-6992 2524-6992 |
DOI: | 10.1186/s42774-019-0015-6 |