A Numerical Method for a Heat Conduction Model in a Double-Pane Window
In this article, we propose a one-dimensional heat conduction model for a double-pane window with a temperature-jump boundary condition and a thermal lagging interfacial effect condition between layers. We construct a second-order accurate finite difference scheme to solve the heat conduction proble...
Gespeichert in:
Veröffentlicht in: | Axioms 2022-08, Vol.11 (8), p.422 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we propose a one-dimensional heat conduction model for a double-pane window with a temperature-jump boundary condition and a thermal lagging interfacial effect condition between layers. We construct a second-order accurate finite difference scheme to solve the heat conduction problem. The designed scheme is mainly based on approximations satisfying the facts that all inner grid points has second-order temporal and spatial truncation errors, while at the boundary points and at inter-facial points has second-order temporal truncation error and first-order spatial truncation error, respectively. We prove that the finite difference scheme introduced is unconditionally stable, convergent, and has a rate of convergence two in space and time for the L∞-norm. Moreover, we give a numerical example to confirm our theoretical results. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms11080422 |