Computing Assortative Mixing by Degree with the s -Metric in Networks Using Linear Programming

Calculation of assortative mixing by degree in networks indicates whether nodes with similar degree are connected to each other. In networks with scale-free distribution high values of assortative mixing by degree can be an indication of a hub-like core in networks. Degree correlation has generally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics 2015-01, Vol.2015 (2015), p.1-9
Hauptverfasser: Waldorp, Lourens, Schmittmann, Verena D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calculation of assortative mixing by degree in networks indicates whether nodes with similar degree are connected to each other. In networks with scale-free distribution high values of assortative mixing by degree can be an indication of a hub-like core in networks. Degree correlation has generally been used to measure assortative mixing of a network. But it has been shown that degree correlation cannot always distinguish properly between different networks with nodes that have the same degrees. The so-called s -metric has been shown to be a better choice to calculate assortative mixing. The s -metric is normalized with respect to the class of networks without self-loops, multiple edges, and multiple components, while degree correlation is always normalized with respect to unrestricted networks, where self-loops, multiple edges, and multiple components are allowed. The challenge in computing the normalized s -metric is in obtaining the minimum and maximum value within a specific class of networks. We show that this can be solved by using linear programming. We use Lagrangian relaxation and the subgradient algorithm to obtain a solution to the s -metric problem. Several examples are given to illustrate the principles and some simulations indicate that the solutions are generally accurate.
ISSN:1110-757X
1687-0042
DOI:10.1155/2015/580361