Evaluation of Three MODIS-Derived Vegetation Index Time Series for Dryland Vegetation Dynamics Monitoring

Understanding the spatial and temporal dynamics of vegetation is essential in drylands. In this paper, we evaluated three vegetation indices, namely the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI) and the Enhanced Vegetation Index (EVI), derived from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2015-06, Vol.7 (6), p.7597-7614
Hauptverfasser: Lu, Linlin, Kuenzer, Claudia, Wang, Cuizhen, Guo, Huadong, Li, Qingting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the spatial and temporal dynamics of vegetation is essential in drylands. In this paper, we evaluated three vegetation indices, namely the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI) and the Enhanced Vegetation Index (EVI), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Surface-Reflectance Product in the Xinjiang Uygur Autonomous Region, China (XUAR), to assess index time series' suitability for monitoring vegetation dynamics in a dryland environment. The mean annual VI and its variability were generated and analyzed from the three VI time series for the period 2001-2012 across XUAR. Two phenological metrics, start of the season (SOS) and end of the season (EOS), were detected and compared for each vegetation type. The mean annual VI images showed similar spatial patterns of vegetation conditions with varying magnitudes. The EVI exhibited high uncertainties in sparsely vegetated lands and forests. The phenological metrics derived from the three VIs are consistent for most vegetation types, with SOS and EOS generated from NDVI showing the largest deviation.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs70607597