New Flame Retardant Systems Based on Expanded Graphite for Rigid Polyurethane Foams

The effect of the addition of new flame retardant systems on the properties of rigid polyurethane (RPUF) foams, in particular, reduction in flammability, was investigated. The modification included the introduction of a flame retardant system containing five parts by weight of expanded graphite (EG)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-09, Vol.10 (17), p.5817
Hauptverfasser: Strąkowska, Anna, Członka, Sylwia, Konca, Piotr, Strzelec, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of the addition of new flame retardant systems on the properties of rigid polyurethane (RPUF) foams, in particular, reduction in flammability, was investigated. The modification included the introduction of a flame retardant system containing five parts by weight of expanded graphite (EG) (based on the total weight of polyol), one part by weight of pyrogenic silica (SiO2) and an ionic liquid (IL): 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim] [BF4]), in an amount of 3:1 with respect to the weight of added silica. The kinetics of the synthesis of modified foams—including the growth rate and the maximum temperature—were determined and the physicochemical properties, such as the determination of apparent density and structure by optical microscopy, mechanical properties such as impact strength, compressive strength and, three-point bending test were determined. An important aspect was also to examine the thermal properties such as thermal stability or flammability. It has been shown that for rigid polyurethane foams, the addition of expanded graphite in the presence of silica and ionic liquid has a great influence on the general use properties. All composites were characterized by reduced flammability as well as better mechanical properties, which may contribute to a wider use of rigid polyurethane foams as construction materials.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10175817