Exponential Stability of the Numerical Solution of a Hyperbolic System with Nonlocal Characteristic Velocities

In this paper, we investigate the problem of the exponential stability of a stationary solution for a hyperbolic system with nonlocal characteristic velocities and measurement error. The formulation of the initial boundary value problem of boundary control for the specified hyperbolic system is give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2024-05, Vol.13 (5), p.334
Hauptverfasser: Aloev, Rakhmatillo Djuraevich, Berdyshev, Abdumauvlen Suleimanovich, Alimova, Vasila, Bekenayeva, Kymbat Slamovna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the problem of the exponential stability of a stationary solution for a hyperbolic system with nonlocal characteristic velocities and measurement error. The formulation of the initial boundary value problem of boundary control for the specified hyperbolic system is given. A difference scheme is constructed for the numerical solution of the considered initial boundary value problem. The definition of the exponential stability of the numerical solution in ℓ2-norm with respect to a discrete perturbation of the equilibrium state of the initial boundary value difference problem is given. A discrete Lyapunov function for a numerical solution is constructed, and a theorem on the exponential stability of a stationary solution of the initial boundary value difference problem in ℓ2-norm with respect to a discrete perturbation is proved.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms13050334