Exponential Stability of the Numerical Solution of a Hyperbolic System with Nonlocal Characteristic Velocities
In this paper, we investigate the problem of the exponential stability of a stationary solution for a hyperbolic system with nonlocal characteristic velocities and measurement error. The formulation of the initial boundary value problem of boundary control for the specified hyperbolic system is give...
Gespeichert in:
Veröffentlicht in: | Axioms 2024-05, Vol.13 (5), p.334 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the problem of the exponential stability of a stationary solution for a hyperbolic system with nonlocal characteristic velocities and measurement error. The formulation of the initial boundary value problem of boundary control for the specified hyperbolic system is given. A difference scheme is constructed for the numerical solution of the considered initial boundary value problem. The definition of the exponential stability of the numerical solution in ℓ2-norm with respect to a discrete perturbation of the equilibrium state of the initial boundary value difference problem is given. A discrete Lyapunov function for a numerical solution is constructed, and a theorem on the exponential stability of a stationary solution of the initial boundary value difference problem in ℓ2-norm with respect to a discrete perturbation is proved. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms13050334 |