Deep lexicography” – Fad or Opportunity?
In recent years, we are witnessing staggering improvements in various semantic data processing tasks due to the developments in the area of deep learning, ranging from image and video processing to speech processing, and natural language understanding. In this paper, we discuss the opportunities and...
Gespeichert in:
Veröffentlicht in: | Rasprave Instituta za hrvatski jezik i jezikoslovlje 2020-01, Vol.46 (2), p.839-852 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, we are witnessing staggering improvements in various semantic data processing tasks due to the developments in the area of deep learning, ranging from image and video processing to speech processing, and natural language understanding. In this paper, we discuss the opportunities and challenges that these developments pose for the area of electronic lexicography. We primarily focus on the concept of representation learning of the basic elements of language, namely words, and the applicability of these word representations to lexicography. We first discuss well-known approaches to learning static representations of words, the so-called word embeddings, and their usage in lexicography-related tasks such as semantic shift detection, and cross-lingual prediction of lexical features such as concreteness and imageability. We wrap up the paper with the most recent developments in the area of word representation learning in form of learning dynamic, context-aware representations of words, showcasing some dynamic word embedding examples, and discussing improvements on lexicography-relevant tasks of word sense disambiguation and word sense induction.
Posljednjih smo godina svjedoci velikoga napretka u različitim zadatcima inteligentne obrade podataka koji je posljedica razvoja dubokoga učenja. ti zadatci uključuju i obradu slike, videa, govora te razumijevanje jezika. u ovome se radu raspravlja o prilikama i izazovima koje taj napredak omogućuje u području digitalne leksikografije. Veći se dio rada odnosi na učenje prikaza različitih elemenata jezika – riječi, leksema te izjava – i njihovu primjenu u leksikografiji. Prikazuju se dobro poznati postupci učenja statičkih vektorskih prikaza riječi te njihova primjena u zadatcima poput prepoznavanja semantičkih pomaka te predviđanja leksičkih značajka riječi. u radu se dalje govori o višejezičnoj razini učenja prikaza riječi te se rad zaključuje prikazom novijih postignuća u području strojnoga razumijevanja jezika – dinamičkih, kontekstnih prikaza riječi. |
---|---|
ISSN: | 1331-6745 1849-0379 |
DOI: | 10.31724/rihjj.46.2.21 |