UAV Localization in Low-Altitude GNSS-Denied Environments Based on POI and Store Signage Text Matching in UAV Images

Localization is the most important basic information for unmanned aerial vehicles (UAV) during their missions. Currently, most UAVs use GNSS to calculate their own position. However, when faced with complex electromagnetic interference situations or multipath effects within cities, GNSS signals can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drones (Basel) 2023-07, Vol.7 (7), p.451
Hauptverfasser: Liu, Yu, Bai, Jing, Wang, Gang, Wu, Xiaobo, Sun, Fangde, Guo, Zhengqiang, Geng, Hujun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Localization is the most important basic information for unmanned aerial vehicles (UAV) during their missions. Currently, most UAVs use GNSS to calculate their own position. However, when faced with complex electromagnetic interference situations or multipath effects within cities, GNSS signals can be interfered with, resulting in reduced positioning accuracy or even complete unavailability. To avoid this situation, this paper proposes an autonomous UAV localization method for low-altitude urban scenarios based on POI and store signage text matching (LPS) in UAV images. The text information of the store signage is first extracted from the UAV images and then matched with the name of the POI data. Finally, the scene location of the UAV images is determined using multiple POIs jointly. Multiple corner points of the store signage in a single image are used as control points to the UAV position. As verified by real flight data, our method can achieve stable UAV autonomous localization with a positioning error of around 13 m without knowing the exact initial position of the UAV at take-off. The positioning effect is better than that of ORB-SLAM2 in long-distance flight, and the positioning error is not affected by text recognition accuracy and does not accumulate with flight time and distance. Combined with an inertial navigation system, it may be able to maintain high-accuracy positioning for UAVs for a long time and can be used as an alternative to GNSS in ultra-low-altitude urban environments.
ISSN:2504-446X
2504-446X
DOI:10.3390/drones7070451