IS-CAT: Intensity-Spatial Cross-Attention Transformer for LiDAR-Based Place Recognition

LiDAR place recognition is a crucial component of autonomous navigation, essential for loop closure in simultaneous localization and mapping (SLAM) systems. Notably, while camera-based methods struggle in fluctuating environments, such as weather or light, LiDAR demonstrates robustness against such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-01, Vol.24 (2), p.582
Hauptverfasser: Joo, Hyeong-Jun, Kim, Jaeho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LiDAR place recognition is a crucial component of autonomous navigation, essential for loop closure in simultaneous localization and mapping (SLAM) systems. Notably, while camera-based methods struggle in fluctuating environments, such as weather or light, LiDAR demonstrates robustness against such challenges. This study introduces the intensity and spatial cross-attention transformer, which is a novel approach that utilizes LiDAR to generate global descriptors by fusing spatial and intensity data for enhanced place recognition. The proposed model leveraged a cross attention to a concatenation mechanism to process and integrate multi-layered LiDAR projections. Consequently, the previously unexplored synergy between spatial and intensity data was addressed. We demonstrated the performance of IS-CAT through extensive validation on the NCLT dataset. Additionally, we performed indoor evaluations on our Sejong indoor-5F dataset and demonstrated successful application to a 3D LiDAR SLAM system. Our findings highlight descriptors that demonstrate superior performance in various environments. This performance enhancement is evident in both indoor and outdoor settings, underscoring the practical effectiveness and advancements of our approach.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24020582