Zigzag optical cavity for sensing and controlling torsional motion

Precision sensing and manipulation of milligram-scale mechanical oscillators has attracted growing interest in the fields of table-top explorations of gravity and tests of quantum mechanics at macroscopic scales. Torsional oscillators present an opportunity in this regard due to their remarked isola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2024-02, Vol.6 (1), p.013141, Article 013141
Hauptverfasser: Agafonova, Sofia, Mishra, Umang, Diorico, Fritz, Hosten, Onur
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precision sensing and manipulation of milligram-scale mechanical oscillators has attracted growing interest in the fields of table-top explorations of gravity and tests of quantum mechanics at macroscopic scales. Torsional oscillators present an opportunity in this regard due to their remarked isolation from environmental noise. For torsional motion, an effective employment of optical cavities to enhance optomechanical interactions—as already established for linear oscillators—so far faced certain challenges. Here, we propose a concept for sensing and manipulating torsional motion, where exclusively the torsional rotations of a pendulum are mapped onto the path length of a single two-mirror optical cavity. The concept inherently alleviates many limitations of previous approaches. A proof-of-principle experiment is conducted with a rigidly controlled pendulum to explore the sensing aspects of the concept and to identify practical limitations in a potential state-of-the art setup. Based on this study, we anticipate development of precision torque sensors utilizing torsional pendulums that can support sensitivities below 10 − 19 N m / Hz , while the motion of the pendulums are dominated by quantum radiation pressure noise at sub-microwatts of incoming laser power. These developments will provide horizons for experiments at the interface of quantum mechanics and gravity.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.6.013141