Life Cycle Assessment of Luminescent Solar Concentrators Integrated into a Smart Window

The main goal of this paper is to assess the life cycle environmental impacts of a multifunctional smart window luminescent solar concentrator (SW–LSC) prototype through the application of the Life Cycle Assessment methodology. To the authors’ knowledge, this is one of the first studies on the topic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-02, Vol.16 (4), p.1869
Hauptverfasser: Muteri, Vincenzo, Longo, Sonia, Traverso, Marzia, Palumbo, Elisabetta, Bua, Letizia, Cellura, Maurizio, Testa, Daniele, Guarino, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main goal of this paper is to assess the life cycle environmental impacts of a multifunctional smart window luminescent solar concentrator (SW–LSC) prototype through the application of the Life Cycle Assessment methodology. To the authors’ knowledge, this is one of the first studies on the topic. The analysis followed a cradle to gate approach, considering the assembly and maintenance phase as well as the end of life, examined separately through a recycling/landfill scenario. A comparison of the impacts of LSC modules with those of some building-integrated photovoltaic technologies was carried out. Results showed that the global warming potential (100 years) for SW–LSC was 5.91 × 103 kg CO2eq and the manufacturing phase had the greatest impact (about 96%). The recycling/landfill scenario results showed the possibility to reduce impacts by an average of 45%. A dominance analysis of SW–LSC components showed that the aluminum frame was the main hotspot (about 60% contribution), followed by the light-shelf (about 19%). Batteries and motors for the shading system were the biggest contributors in the abiotic depletion potential category (36% and 30%, respectively). An alternative scenario, which involved the use of 75% recycled aluminum for the window frame, highlighted the possibility to reduce environmental impacts from 3% to 46%. Finally, the comparison results showed that the LSC modules’ impacts were on average 870% lower than that of various PV technologies when compared on the basis of m2; on the contrary, LSC modules had the highest impacts in all categories (from 200% to 1900%) when compared with other PV technologies on the basis of 1 kWh of energy generated. The results could be used for the definition of eco-design strategies for the examined device, in order to support the scaling-up process and to put “greener” systems onto the market.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16041869