Synthesis of Stable Cholesteryl–Polyethylene Glycol–Peptide Conjugates with Non-Disperse Polyethylene Glycol Lengths
A method for conjugating cholesterol to peptide ligands through non-disperse polyethylene glycol (ND-PEG) through a non-hydrolysable linkage is described. The iterative addition of tetraethylene glycol macrocyclic sulfate to cholesterol (Chol) renders a family of highly pure well-defined Chol-PEG co...
Gespeichert in:
Veröffentlicht in: | ACS omega 2020-03, Vol.5 (10), p.5508-5519 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for conjugating cholesterol to peptide ligands through non-disperse polyethylene glycol (ND-PEG) through a non-hydrolysable linkage is described. The iterative addition of tetraethylene glycol macrocyclic sulfate to cholesterol (Chol) renders a family of highly pure well-defined Chol-PEG compounds with different PEG lengths from 4 up to 20 ethylene oxide units, stably linked through an ether bond. The conjugation of these Chol-PEG compounds to the cyclic (RGDfK) peptide though Lys5 side chains generates different lengths of Chol-PEG-RGD conjugates that retain the oligomer purity of the precursors, as analysis by HRMS and NMR has shown. Other derivatives were synthesized with similar results, such as Chol-PEG-OCH3 and Chol-PEG conjugated to glutathione and Tf1 peptides through maleimide–thiol chemoselective ligation. This method allows the systematic synthesis of highly pure uniform stable Chol-PEGs, circumventing the use of activation groups on each elongation step and thus reducing the number of synthesis steps. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c00130 |