Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise

Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-10, Vol.10 (1), p.4623-11, Article 4623
Hauptverfasser: Henríquez-Olguin, Carlos, Knudsen, Jonas R., Raun, Steffen H., Li, Zhencheng, Dalbram, Emilie, Treebak, Jonas T., Sylow, Lykke, Holmdahl, Rikard, Richter, Erik A., Jaimovich, Enrique, Jensen, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but whether myocellular ROS production is stimulated by in vivo exercise to control metabolism is unclear. Here, we combined exercise in humans and mice with fluorescent dyes, genetically-encoded biosensors, and NADPH oxidase 2 (NOX2) loss-of-function models to demonstrate that NOX2 is the main source of cytosolic ROS during moderate-intensity exercise in skeletal muscle. Furthermore, two NOX2 loss-of-function mouse models lacking either p47phox or Rac1 presented striking phenotypic similarities, including greatly reduced exercise-stimulated glucose uptake and GLUT4 translocation. These findings indicate that NOX2 is a major myocellular ROS source, regulating glucose transport capacity during moderate-intensity exercise. Reactive oxygen species (ROS) stimulate GLUT4-mediated glucose transport following contraction of isolated muscle, but it is not clear if this occurs in vivo. Here, the authors show in human volunteers that exercise induces ROS increase in muscle and, using loss of-function animal models, they demonstrate that NOX2 is a major ROS source required to stimulate glucose uptake during exercise.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12523-9