Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition
In this paper, we analyze the boundary value problem of a class of multi-order fractional differential equations involving the standard Caputo fractional derivative with the general periodic boundary conditions: { L ( D ) u ( t ) = f ( t , u ( t ) ) , t ∈ [ 0 , T ] , T > 0 , u ( 0 ) = u ( T ) >...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2017-05, Vol.2017 (1), p.1-12, Article 130 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we analyze the boundary value problem of a class of multi-order fractional differential equations involving the standard Caputo fractional derivative with the general periodic boundary conditions:
{
L
(
D
)
u
(
t
)
=
f
(
t
,
u
(
t
)
)
,
t
∈
[
0
,
T
]
,
T
>
0
,
u
(
0
)
=
u
(
T
)
>
0
,
u
′
(
0
)
=
u
′
(
T
)
>
0
,
where
L
(
D
)
=
∑
i
=
0
n
a
i
D
S
i
,
1
≤
S
0
<
⋯
<
S
n
−
1
<
S
n
<
2
,
a
i
∈
R
,
a
n
≠
0
, and
f
:
[
0
,
T
]
×
R
→
R
is a continuous operation. We get the Green’s function in terms of the Laplace transform. We obtain the existence and uniqueness of solution for the class of multi-order fractional differential equations. We investigate the blowing-up solutions to the special case
f
(
t
,
u
(
t
)
)
=
|
u
(
t
)
|
p
,
a
i
≥
0
, and give an upper bound on the blow-up time
T
max
. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-017-1180-8 |