Blowing-up solutions of multi-order fractional differential equations with the periodic boundary condition

In this paper, we analyze the boundary value problem of a class of multi-order fractional differential equations involving the standard Caputo fractional derivative with the general periodic boundary conditions: { L ( D ) u ( t ) = f ( t , u ( t ) ) , t ∈ [ 0 , T ] , T > 0 , u ( 0 ) = u ( T ) >...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2017-05, Vol.2017 (1), p.1-12, Article 130
Hauptverfasser: Dai, Qun, Wang, Changjia, Gao, Ruimei, Li, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze the boundary value problem of a class of multi-order fractional differential equations involving the standard Caputo fractional derivative with the general periodic boundary conditions: { L ( D ) u ( t ) = f ( t , u ( t ) ) , t ∈ [ 0 , T ] , T > 0 , u ( 0 ) = u ( T ) > 0 , u ′ ( 0 ) = u ′ ( T ) > 0 , where L ( D ) = ∑ i = 0 n a i D S i , 1 ≤ S 0 < ⋯ < S n − 1 < S n < 2 , a i ∈ R , a n ≠ 0 , and f : [ 0 , T ] × R → R is a continuous operation. We get the Green’s function in terms of the Laplace transform. We obtain the existence and uniqueness of solution for the class of multi-order fractional differential equations. We investigate the blowing-up solutions to the special case f ( t , u ( t ) ) = | u ( t ) | p , a i ≥ 0 , and give an upper bound on the blow-up time T max .
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-017-1180-8