Dietary Supplementation with Sea Bass ( Lateolabrax maculatus ) Ameliorates Ulcerative Colitis and Inflammation in Macrophages through Inhibiting Toll-Like Receptor 4-Linked Pathways

Sea bass ( ) is a kind of food material commonly consumed in daily life. In traditional Chinese medicinal books, it has been indicated that sea bass can be applied for managing many inflammation-associated conditions. However, the studies on the pharmacological mechanisms of inflammation of sea bass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2019-06, Vol.20 (12), p.2907
Hauptverfasser: Chen, Jiali, Jayachandran, Muthukumaran, Zhang, Wenxia, Chen, Lingyuqing, Du, Bin, Yu, Zhiling, Xu, Baojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sea bass ( ) is a kind of food material commonly consumed in daily life. In traditional Chinese medicinal books, it has been indicated that sea bass can be applied for managing many inflammation-associated conditions. However, the studies on the pharmacological mechanisms of inflammation of sea bass remain scarce. Hence, this study aims to investigate the molecular mechanisms of the anti-inflammatory activity of sea bass. Anti-inflammatory activities of sea bass were assessed using dextran sulfate sodium (DSS)-induced colitis in a mice model and lipopolysaccharide (LPS)-activated macrophages model. Low body weight and short colon length were observed in DSS-fed mice that were significantly recovered upon sea bass treatments. Moreover, the colon histopathology score showed that sea bass-treated mice had decreased crypt damage, focal inflammation infiltration and the extent of inflammation, suggesting that treatment with sea bass could attenuate intestinal inflammation. In addition, the in-vitro study conjointly indicated that sea bass could suppress the inflammatory mediators in LPS-activated macrophage by inhibiting the TLR4-linked pathway. The present findings demonstrated that sea bass has an inhibitory effect on TLR4 signaling; thus, it could be a promising candidate for treating inflammation-associated conditions. A further justification for the clinical application of sea bass in treating inflammation-associated conditions is necessary.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20122907