RETRACTED ARTICLE: Non-sample fuzzy based convolutional neural network model for noise artifact in biomedical images
The use of a light-weight deep learning Convolutional Neural Network (CNN) augmented with the power of Fuzzy Non-Sample Shearlet Transformation (FNSST) has successfully solved the problem of reducing noise and artifacts in Low-Dose Computed Tomography (LDCT) pictures. Both the Normal-Dose Computed T...
Gespeichert in:
Veröffentlicht in: | Discover applied sciences 2024-01, Vol.6 (1), p.16-14, Article 16 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of a light-weight deep learning Convolutional Neural Network (CNN) augmented with the power of Fuzzy Non-Sample Shearlet Transformation (FNSST) has successfully solved the problem of reducing noise and artifacts in Low-Dose Computed Tomography (LDCT) pictures. Both the Normal-Dose Computed Tomography (NDCT) and the Low-Dose Computed Tomography (LDCT) images from the dataset are subjected to the FNSST decomposition procedure during the training phase, producing high-frequency sub-images that act as input for the CNN. The CNN creates a meaningful connection between the high-frequency sub-images from LDCT and their corresponding residual sub-images during the training operation. The CNN is given the capacity to distinguish between LDCT high-frequency sub-images and expected high-frequency sub-images, which frequently have varying levels of noise or artifacts, especially in a fuzzy setting. The FNSST-CNN then successfully distinguishes LDCT high-frequency sub-images from the expected high-frequency sub-images during the testing phase, thereby reducing noise and artifacts. When compared to other approaches like KSVD, BM3D, and conventional image domain CNNs, the performance of FNSST-CNN is impressive as shown by better peak signal-to-noise ratios, stronger structural similarity, and a closer likeness to NDCT pictures.
Article Highlights
1. A CNN model has been proposed to reduce the noise and artifacts in Low-Dose Computed Tomography images.
2. During the testing phase, the proposed model successfully distinguishes between high frequency sub-images.
3. CNN performs better than KSVD, BM3D and conventional CNN models in terms of better Signal-to-noise ratio. |
---|---|
ISSN: | 3004-9261 2523-3963 3004-9261 2523-3971 |
DOI: | 10.1007/s42452-024-05634-6 |