Spectrum of One-Dimensional Potential Perturbed by a Small Convolution Operator: General Structure
We consider an operator of multiplication by a complex-valued potential in L2(R), to which we add a convolution operator multiplied by a small parameter. The convolution kernel is supposed to be an element of L1(R), while the potential is a Fourier image of some function from the same space. The con...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-10, Vol.11 (19), p.4042 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an operator of multiplication by a complex-valued potential in L2(R), to which we add a convolution operator multiplied by a small parameter. The convolution kernel is supposed to be an element of L1(R), while the potential is a Fourier image of some function from the same space. The considered operator is not supposed to be self-adjoint. We find the essential spectrum of such an operator in an explicit form. We show that the entire spectrum is located in a thin neighbourhood of the spectrum of the multiplication operator. Our main result states that in some fixed neighbourhood of a typical part of the spectrum of the non-perturbed operator, there are no eigenvalues and no points of the residual spectrum of the perturbed one. As a consequence, we conclude that the point and residual spectrum can emerge only in vicinities of certain thresholds in the spectrum of the non-perturbed operator. We also provide simple sufficient conditions ensuring that the considered operator has no residual spectrum at all. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11194042 |