Down-Regulation of TMPO-AS1 Induces Apoptosis in Lung Carcinoma Cells by Regulating miR-143-3p/CDK1 Axis

Evidence has shown that long non-coding RNAs (lncRNA) play pivotal roles in cancer promotion as well as suppression. But the molecular mechanism of lncRNA TMPO antisense transcript 1 (TMPO-AS1) in lung cancer (LC) remains unclear. This study mainly investigated the effect of TMPO-AS1 in LC treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technology in cancer research & treatment 2021, Vol.20, p.1533033820948880-1533033820948880
Hauptverfasser: Li, Qiu, Bian, Yuan, Li, Qiaolian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence has shown that long non-coding RNAs (lncRNA) play pivotal roles in cancer promotion as well as suppression. But the molecular mechanism of lncRNA TMPO antisense transcript 1 (TMPO-AS1) in lung cancer (LC) remains unclear. This study mainly investigated the effect of TMPO-AS1 in LC treatment. TMPO-AS1 was tested by Kaplan-Meier method. Quantitative real time polymerase chain reaction (qRT-PCR) was employed to assess the expressions of TMPO-AS1, miR-143-3p, and CDK1 respectively in LC tissues and cell lines. TMPO-AS1, miR-143-3p and CDK1 expressions in LC cells were regulated through cell transfection, followed by MTT for cell viability detection. Besides, dual-luciferase reporter assays were performed to verify the interrelated microRNA of TMPO-AS1 and the target of miR-143-3p. Western blot experiments were used to examine the expressions of apoptosis-related proteins, and flow cytometry tested the cell apoptosis in treated cells. TMPO-AS1 and CDK1 were overexpressed in LC tissues and cells, while miR-143-3p level was suppressed. The decrease of TMPO-AS1 led to the increase of miR-143-3p, which further resulted in the reduction of CDK1. Down-regulating TMPO-AS1 reduced LC cell viability, motivated cell apoptosis, as well as promoted the expressions of Bcl and CCND1 and restrained Caspase-3 level, but all these consequences were abrogated by miR-143-3p inhibitor. Simultaneously, siCDK1 could reverse the anti-apoptosis and pro-activity functions of miR-143-3p inhibitor in LC cells. Down-regulation of TMPO-AS1 has the effects of pro-apoptosis in LC by manipulating miR-143-3p/CDK1, which is hopeful to be a novel therapy for LC patients.
ISSN:1533-0346
1533-0338
DOI:10.1177/1533033820948880