Protocol for life cycle assessment modeling of US fruit and vegetable supply chains- cases of processed potato and tomato products

This article elaborates on the life cycle assessment (LCA) protocol designed for formulating the life cycle inventories (LCIs) of fruit and vegetable (F&V) supply chains. As a set of case studies, it presents the LCI data of the processed vegetable products, (a) potato: chips, frozen-fries, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data in brief 2021-02, Vol.34, p.106639, Article 106639
Hauptverfasser: Parajuli, Ranjan, Gustafson, Dave, Asseng, Senthold, Stöckle, Claudio O., Kruse, John, Zhao, Chuang, Intrapapong, Pon, Matlock, Marty D, Thoma, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article elaborates on the life cycle assessment (LCA) protocol designed for formulating the life cycle inventories (LCIs) of fruit and vegetable (F&V) supply chains. As a set of case studies, it presents the LCI data of the processed vegetable products, (a) potato: chips, frozen-fries, and dehydrated flakes, and (b) tomato-pasta sauce. The data can support to undertake life cycle impact assessment (LCIA) of food commodities in a “cradle to grave” approach. An integrated F&V supply chain LCA model is constructed, which combined three components of the supply chain: farming system, post-harvest system (processing until the consumption) and bio-waste handling system. We have used numbers of crop models to calculate the crop yields, crop nutrient uptake, and irrigation water requirements, which are largely influenced by the local agro-climatic parameters of the selected crop reporting districts (CRDs) of the United States. For the farming system, LCI information, as shown in the data are averaged from the respective CRDs. LCI data for the post-harvest stages are based on available information from the relevant processing plants and the engineering estimates. The article also briefly presents the assumptions made for evaluating future crop production scenarios. Future scenarios integrate the impact of climate change on the future productivity and evaluate the effect of adaptation measures and technological advancement on the crop yield. The provided data are important to understand the characteristics of the food supply chain, and their relationships with the life cycle environmental impacts. The data can also support to formulate potential environmental mitigation and adaptation measures in the food supply chain mainly to cope with the adverse impact of climate change.
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2020.106639