Integrated-omics analysis with explainable deep networks on pathobiology of infant bronchiolitis

Bronchiolitis is the leading cause of infant hospitalization. However, the molecular networks driving bronchiolitis pathobiology remain unknown. Integrative molecular networks, including the transcriptome and metabolome, can identify functional and regulatory pathways contributing to disease severit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ systems biology and applications 2024-08, Vol.10 (1), p.93-12, Article 93
Hauptverfasser: Ooka, Tadao, Usuyama, Naoto, Shibata, Ryohei, Kyo, Michihito, Mansbach, Jonathan M., Zhu, Zhaozhong, Camargo, Carlos A., Hasegawa, Kohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bronchiolitis is the leading cause of infant hospitalization. However, the molecular networks driving bronchiolitis pathobiology remain unknown. Integrative molecular networks, including the transcriptome and metabolome, can identify functional and regulatory pathways contributing to disease severity. Here, we integrated nasopharyngeal transcriptome and metabolome data of 397 infants hospitalized with bronchiolitis in a 17-center prospective cohort study. Using an explainable deep network model, we identified an omics-cluster comprising 401 transcripts and 38 metabolites that distinguishes bronchiolitis severity (test-set AUC, 0.828). This omics-cluster derived a molecular network, where innate immunity-related metabolites (e.g., ceramides) centralized and were characterized by toll-like receptor (TLR) and NF-κB signaling pathways (both FDR 
ISSN:2056-7189
2056-7189
DOI:10.1038/s41540-024-00420-x