Hydrogen Vortex Flow Impact on the Catalytic Wall

An experimental study of a hydrogen-containing jet’s impact on a palladium-based catalyst in an air atmosphere was carried out. High-intensity temperature fluctuations on the catalyst surface are obtained in the case when large-scale vortex structures are contained in the jet. These superstructures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-01, Vol.16 (1), p.104
Hauptverfasser: Lemanov, Vadim, Lukashov, Vladimir, Sharov, Konstantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An experimental study of a hydrogen-containing jet’s impact on a palladium-based catalyst in an air atmosphere was carried out. High-intensity temperature fluctuations on the catalyst surface are obtained in the case when large-scale vortex structures are contained in the jet. These superstructures have a longitudinal size of 20–30 initial jet diameters and a transverse size of about 3–4 diameters. To form such structures, it is necessary to use long, round tubes in the Reynolds number range of 2000–3000 as a source of the impinging jet when a laminar-turbulent transition occurs in the channel according to the intermittency scenario. This effect was obtained at a low hydrogen content in the mixture (XH2 = 3…15%) and a low initial temperature of the catalyst (180 °C). It is shown that the smallest temperature fluctuations are obtained for the laminar flow in the tube (
ISSN:1996-1073
1996-1073
DOI:10.3390/en16010104