Additive effects of type 2 diabetes and metabolic syndrome on left ventricular torsion and linear deformation abnormalities during dobutamine stress echocardiography
ObjectiveThe interplay between metabolic syndrome (MS) and type 2 diabetes (T2D) on regional myocardial mechanics and the potential additional effects of their combination remain poorly understood. In this context, we evaluated left ventricular (LV) torsion and linear deformation at rest and under d...
Gespeichert in:
Veröffentlicht in: | Frontiers in cardiovascular medicine 2022-09, Vol.9, p.991415-991415 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ObjectiveThe interplay between metabolic syndrome (MS) and type 2 diabetes (T2D) on regional myocardial mechanics and the potential additional effects of their combination remain poorly understood. In this context, we evaluated left ventricular (LV) torsion and linear deformation at rest and under dobutamine (DB) stress in patients with T2D, MS or both. MethodsThirty-nine T2D patients without MS (T2D), 37 MS patients free from T2D (MS), 44 patients with both T2D and MS (T2D-MS group) and 38 healthy patients (control group) were prospectively recruited. Speckle-tracking echocardiography (STE) was conducted at rest and low dose DB to evaluate LV myocardial longitudinal (LS) as well as circumferential (CS) strain and early diastolic strain rate (LSrd, CSrd) and twist-untwist mechanics. ResultsAt rest, MS, T2D and controls presented with similar resting LS and LSrd while significant lower values were obtained in T2D-MS compared to controls. DB revealed reduced LS, LSrd, CS and CSrd in MS and T2D groups compared to controls. In T2-MS, the decline in LS and LSrd established at rest was exacerbated under DB. Stress echocardiography revealed also lower basal rotation and subsequently lower twist in MS and T2D patients compared to controls. T2D-MS showed major impairments of apical rotation and twist under DB stress, with values significantly lower compared to the 3 other groups. From stepwise multiple linear regression analysis, epicardial adipose tissue for Δ (rest to DB) LS, numbers of MS factors for Δ CS and Δ Twist emerged as major independent predictors. ConclusionThese results demonstrate synergic and additive effects of T2D and MS on LV torsion and linear deformation abnormalities in asymptomatic patients with metabolic diseases. They also highlight the usefulness of speckle tracking echocardiography under DB stress in detecting multidirectional myocardial mechanics impairments that can remain barely detectable at rest, such as in isolated T2D or MS patients. |
---|---|
ISSN: | 2297-055X 2297-055X |
DOI: | 10.3389/fcvm.2022.991415 |