Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural Network

After rolling, TP2 copper tubes exhibit defects such as sawtooth marks, cracks, and uneven wall thickness after joint drawing, which severely affects the quality of the finished copper tubes. To study the effect of drawing process parameters on wall thickness uniformity, an ultrasonic detection plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-12, Vol.14 (23), p.11203
Hauptverfasser: Yue, Fengli, Sha, Zhuo, Sun, Hongyun, Chen, Dayong, Liu, Jinsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After rolling, TP2 copper tubes exhibit defects such as sawtooth marks, cracks, and uneven wall thickness after joint drawing, which severely affects the quality of the finished copper tubes. To study the effect of drawing process parameters on wall thickness uniformity, an ultrasonic detection platform for measuring the wall thickness of rolled copper tubes was constructed to verify the accuracy of the experimental equipment. Using the detected data, a finite element model of drawn copper tubes was established, and numerical simulation studies were conducted to analyze the influence of parameters such as outer die taper angle, drawing speed, and friction coefficient on drawing force, maximum temperature, average wall thickness, and wall thickness uniformity. To address the problem of the large number of finite element model meshes and low solution efficiency, the wall thickness uniformity was predicted using a radial basis function (RBF) neural network, and parameter optimization was performed using the particle swarm optimization (PSO) algorithm. The research results show that the RBF neural network can accurately predict wall thickness uniformity, and using the PSO optimization algorithm, the best parameter combination can reduce the wall thickness uniformity after drawing in finite element simulation.
ISSN:2076-3417
2076-3417
DOI:10.3390/app142311203