An Open Circuit Voltage Model Fusion Method for State of Charge Estimation of Lithium-Ion Batteries
The mapping between open circuit voltage (OCV) and state of charge (SOC) is critical to the lithium-ion battery management system (BMS) for electric vehicles. In order to solve the poor accuracy in the local SOC range of most OCV models, an OCV model fusion method for SOC estimation is proposed. Acc...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-04, Vol.14 (7), p.1797 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mapping between open circuit voltage (OCV) and state of charge (SOC) is critical to the lithium-ion battery management system (BMS) for electric vehicles. In order to solve the poor accuracy in the local SOC range of most OCV models, an OCV model fusion method for SOC estimation is proposed. According to the characteristics of the experimental OCV–SOC curve, the method divides SOC interval (0, 100%) into several sub-intervals, and respectively fits the OCV curve segments in each sub-interval to obtain a corresponding number of OCV sub-models with local high precision. After that, the OCV sub-models are fused through the continuous weight function to obtain fusional OCV model. Regarding the OCV curve obtained from low-current OCV test as the criterion, the fusional OCV models of LiNiMnCoO2 (NMC) and LiFePO4 (LFP) are compared separately with the conventional OCV models. The comparison shows great fitting accuracy of the fusional OCV model. Furthermore, the adaptive cubature Kalman filter (ACKF) is utilized to estimate SOC and capacity under a dynamic stress test (DST) at different temperatures. The experimental results show that the fusional OCV model can effectively track the performance of the OCV–SOC curve model. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14071797 |