Domain-Based Benchmark Experiments: Exploratory and Inferential Analysis

Benchmark experiments are the method of choice to compare learning algorithms empirically. For collections of data sets, the empirical performance distributions of a set of learning algorithms are estimated, compared, and ordered. Usually this is done for each data set separately. The present manusc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Österreichische Zeitschrift für Statistik 2016-02, Vol.41 (1)
Hauptverfasser: Eugster, Manuel J. A., Hothorn, Torsten, Leisch, Friedrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Benchmark experiments are the method of choice to compare learning algorithms empirically. For collections of data sets, the empirical performance distributions of a set of learning algorithms are estimated, compared, and ordered. Usually this is done for each data set separately. The present manuscript extends this single data set-based approach to a joint analysis for the complete collection, the so called problem domain. This enablesto decide which algorithms to deploy in a specific application or to compare newly developed algorithms with well-known algorithms on established problem domains.Specialized visualization methods allow for easy exploration of huge amounts of benchmark data. Furthermore, we take the benchmark experiment design into account and use mixed-effects models to provide a formal statistical analysis. Two domain-based benchmark experiments demonstrate our methods: the UCI domain as a well-known domain when one is developing a new algorithm; and the Grasshopper domain as a domain where we want to find the  best learning algorithm for a prediction component in an enterprise application software system.
ISSN:1026-597X
DOI:10.17713/ajs.v41i1.185