On the Calculation of Solid-Fluid Contact Angles from Molecular Dynamics

A methodology for the determination of the solid-fluid contact angle, to be employed within molecular dynamics (MD) simulations, is developed and systematically applied. The calculation of the contact angle of a fluid drop on a given surface, averaged over an equilibrated MD trajectory, is divided i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2013-09, Vol.15 (9), p.3734-3745
Hauptverfasser: Santiso, Erik, Herdes, Carmelo, Müller, Erich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A methodology for the determination of the solid-fluid contact angle, to be employed within molecular dynamics (MD) simulations, is developed and systematically applied. The calculation of the contact angle of a fluid drop on a given surface, averaged over an equilibrated MD trajectory, is divided in three main steps: (i) the determination of the fluid molecules that constitute the interface, (ii) the treatment of the interfacial molecules as a point cloud data set to define a geometric surface, using surface meshing techniques to compute the surface normals from the mesh, (iii) the collection and averaging of the interface normals collected from the post-processing of the MD trajectory. The average vector thus found is used to calculate the Cassie contact angle (i.e., the arccosine of the averaged normal z-component). As an example we explore the effect of the size of a drop of water on the observed solid-fluid contact angle. A single coarse-grained bead representing two water molecules and parameterized using the SAFT-γ Mie equation of state (EoS) is employed, meanwhile the solid surfaces are mimicked using integrated potentials. The contact angle is seen to be a strong function of the system size for small nano-droplets. The thermodynamic limit, corresponding to the infinite size (macroscopic) drop is only truly recovered when using an excess of half a million water coarse-grained beads and/or a drop radius of over 26 nm.
ISSN:1099-4300
1099-4300
DOI:10.3390/e15093734