Adenosine Methylation in Arabidopsis mRNA is Associated with the 3' End and Reduced Levels Cause Developmental Defects

We previously showed that the N6-methyladenosine (m(6)A) mRNA methylase is essential during Arabidopsis thaliana embryonic development. We also demonstrated that this modification is present at varying levels in all mature tissues. However, the requirement for the m(6)A in the mature plant was not t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2012-01, Vol.3, p.48-48
Hauptverfasser: Bodi, Zsuzsanna, Zhong, Silin, Mehra, Surbhi, Song, Jie, Graham, Neil, Li, Hongying, May, Sean, Fray, Rupert George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We previously showed that the N6-methyladenosine (m(6)A) mRNA methylase is essential during Arabidopsis thaliana embryonic development. We also demonstrated that this modification is present at varying levels in all mature tissues. However, the requirement for the m(6)A in the mature plant was not tested. Here we show that a 90% reduction in m(6)A levels during later growth stages gives rise to plants with altered growth patterns and reduced apical dominance. The flowers of these plants commonly show defects in their floral organ number, size, and identity. The global analysis of gene expression from reduced m(6)A plants show that a significant number of down-regulated genes are involved in transport, or targeted transport, and most of the up-regulated genes are involved in stress and stimulus response processes. An analysis of m(6)A distribution in fragmented mRNA suggests that the m(6)A is predominantly positioned toward the 3' end of transcripts in a region 100-150 bp before the poly(A) tail. In addition to the analysis of the phenotypic changes in the low methylation Arabidopsis plants we will review the latest advances in the field of mRNA internal methylation.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2012.00048