Exopolysaccharide structure is not a determinant of host-plant specificity in nodulation of Vicia sativa roots

Exopolysaccharide (EPS)-deficient strains of the root nodule symbiote Rhizobium leguminosarum induce formation of abortive infection threads in Vicia sativa subsp. nigra roots. As a result, the nodule tissue remains uninfected. Formation of an infection thread can be restored by coinoculation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant-microbe interactions 2005-11, Vol.18 (11), p.1123-1129
Hauptverfasser: Laus, M.C, Brussel, A.A.N. van, Kijne, J.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exopolysaccharide (EPS)-deficient strains of the root nodule symbiote Rhizobium leguminosarum induce formation of abortive infection threads in Vicia sativa subsp. nigra roots. As a result, the nodule tissue remains uninfected. Formation of an infection thread can be restored by coinoculation of the EPS-deficient mutant with a Nod factor-deficient strain, which produces a similar EPS structure. This suggests that EPS contributes to host-plant specificity of nodulation. Here, a comparison was made of i) coinoculation with heterologous strains with different EPS structures, and ii) introduction of the pRL1JI Sym plasmid or a nod gene-encoding fragment in the same heterologous strains. Most strains not complementing in coinoculation experiments were able to nodulate V. sativa roots as transconjugants. Apparently, coinoculation is a delicate approach in which differences in root colonization ability or bacterial growth rate easily affect successful infection-thread formation. Obviously, lack of infection-thread formation in coinoculation studies is not solely determined by EPS structure. Transconjugation data show that different EPS structures can allow infection-thread formation and subsequent nodulation of V. sativa roots.
ISSN:0894-0282
1943-7706
DOI:10.1094/MPMI-18-1123