Personal VOCs Exposure with a Sensor Network Based on Low-Cost Gas Sensor, and Machine Learning Enabled Indoor Localization

Indoor locations with limited air exchange can easily be contaminated by harmful volatile compounds. Thus, is of great interest to monitor the distribution of chemicals indoors to reduce associated risks. To this end, we introduce a monitoring system based on a Machine Learning approach that process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (5), p.2457
Hauptverfasser: Papale, Leonardo, Catini, Alexandro, Capuano, Rosamaria, Allegra, Valerio, Martinelli, Eugenio, Palmacci, Massimo, Tranfo, Giovanna, Di Natale, Corrado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indoor locations with limited air exchange can easily be contaminated by harmful volatile compounds. Thus, is of great interest to monitor the distribution of chemicals indoors to reduce associated risks. To this end, we introduce a monitoring system based on a Machine Learning approach that processes the information delivered by a low-cost wearable VOC sensor incorporated in a Wireless Sensor Network (WSN). The WSN includes fixed anchor nodes necessary for the localization of mobile devices. The localization of mobile sensor units is the main challenge for indoor applications. Yes. The localization of mobile devices was performed by analyzing the with machine learning algorithms aimed at localizing the emitting source in a predefined map. Tests performed on a 120 m meandered indoor location showed a localization accuracy greater than 99%. The WSN, equipped with a commercial metal oxide semiconductor gas sensor, was used to map the distribution of ethanol from a point-like source. The sensor signal correlated with the actual ethanol concentration as measured by a PhotoIonization Detector (PID), demonstrating the simultaneous detection and localization of the VOC source.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23052457