Hydrothermal Carbonization of Spent Coffee Grounds

With increasing coffee production and consumption, the amount of coffee by-product is also increasing. Therefore, there is growing worldwide interest in using these by-products as a renewable energy source. In this study, hydrothermal carbonization was conducted with subcritical water to improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-07, Vol.11 (14), p.6542
Hauptverfasser: Kim, Hyeok-Jin, Oh, Sea-Cheon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With increasing coffee production and consumption, the amount of coffee by-product is also increasing. Therefore, there is growing worldwide interest in using these by-products as a renewable energy source. In this study, hydrothermal carbonization was conducted with subcritical water to improve the fuel characteristics of spent coffee grounds. The water content was varied, with the mass ratio between the dry sample and water set to 1:1.5 and 1:4. The reaction temperature was increased by 10 °C from 180 to 250 °C. The fuel and thermal characteristics of the reaction products were investigated through mass and energy yields, elemental, proximate, and heating value analysis. In analysis results, as the reaction temperature increased, carbon and fixed carbon content increased, and oxygen and volatile matter content decreased, resulting in an increase in calorific value. Thermogravimetric analysis, derivative thermogravimetry, and Fourier transform infrared spectroscopy were also conducted on the reaction products. To investigate their storage characteristics, chemical oxygen demand analysis was conducted. The results showed that with increasing reaction temperature, the fixed carbon content and heating value increased; also, the fuel characteristics became similar to those of coal. In addition, the reaction products became more hydrophobic as the reaction temperature increased.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11146542