Ionic Solvent Shell Drives Electroactuation in Organic Mixed Ionic‐Electronic Conductors

The conversion of electrochemical processes into mechanical deformation in organic mixed ionic‐electronic conductors (OMIECs) enables artificial muscle‐like actuators but is also critical for degradation processes affecting OMIEC‐based devices. To provide a microscopic understanding of electroactuat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced Science 2024-05, Vol.11 (18), p.e2308746-n/a
Hauptverfasser: Bonafè, Filippo, Decataldo, Francesco, Cramer, Tobias, Fraboni, Beatrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conversion of electrochemical processes into mechanical deformation in organic mixed ionic‐electronic conductors (OMIECs) enables artificial muscle‐like actuators but is also critical for degradation processes affecting OMIEC‐based devices. To provide a microscopic understanding of electroactuation, the modulated electrochemical atomic force microscopy (mEC‐AFM) is introduced here as a novel in‐operando characterization method for electroactive materials. The technique enables multidimensional spectroscopic investigations of local electroactuation and charge uptake giving access to the electroactuation transfer function. For poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based microelectrodes, the spectroscopic measurements are combined with multichannel mEC‐AFM imaging, providing maps of local electroactuation amplitude and phase as well as surface morphology. The results demonstrate that the amplitude and timescales of electroactuation are governed by the drift motion of hydrated ions. Accordingly, slower water diffusion processes are not limiting, and the results illustrate how OMIEC microactuators can operate at sub‐millisecond timescales. In this work, the modulated electrochemical atomic force microscopy (mEC‐AFM) is introduced to study microscopic electroactuation processes in organic mixed ionic‐electronic conductors. By combining spectroscopic measurements with multichannel mEC‐AFM imaging, it is demonstrated that electroswelling is governed by the drift motion of hydrated ions, achieving sub‐millisecond operation in PEDOT:PSS microactuators.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202308746