Single-Cell Transcriptome Analysis Defines Expression of Kabuki Syndrome-Associated KMT2D Targets and Interacting Partners

Objectives. Kabuki syndrome (KS) is a rare genetic disorder characterized by developmental delay, retarded growth, and cardiac, gastrointestinal, neurocognitive, renal, craniofacial, dental, and skeletal defects. KS is caused by mutations in the genes encoding histone H3 lysine 4 methyltransferase (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells international 2022-08, Vol.2022, p.4969441-9
Hauptverfasser: Enkhmandakh, Badam, Robson, Paul, Joshi, Pujan, Vijaykumar, Anushree, Shin, Dong-Guk, Mina, Mina, Bayarsaihan, Dashzeveg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives. Kabuki syndrome (KS) is a rare genetic disorder characterized by developmental delay, retarded growth, and cardiac, gastrointestinal, neurocognitive, renal, craniofacial, dental, and skeletal defects. KS is caused by mutations in the genes encoding histone H3 lysine 4 methyltransferase (KMT2D) and histone H3 lysine 27 demethylase (KDM6A), which are core components of the complex of proteins associated with histone H3 lysine 4 methyltransferase SET1 (SET1/COMPASS). Using single-cell RNA data, we examined the expression profiles of Kmt2d and Kdm6a in the mouse dental pulp. In the incisor pulp, Kmt2d and Kdm6a colocalize with other genes of the SET1/COMPASS complex comprised of the WD-repeat protein 5 gene (Wdr5), the retinoblastoma-binding protein 5 gene (Rbbp5), absent, small, and homeotic 2-like protein-encoding gene (Ash2l), nuclear receptor cofactor 6 gene (Ncoa6), and Pax-interacting protein 1 gene (Ptip1). In addition, we found that Kmt2d and Kdm6a coexpress with the downstream target genes of the Wingless and Integrated (WNT) and sonic hedgehog signaling pathways in mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation. Taken together, our results suggest an essential role of KMT2D and KDK6A in directing lineage-specific gene expression during differentiation of MSCs.
ISSN:1687-966X
1687-9678
1687-9678
DOI:10.1155/2022/4969441