The Metric Chromatic Number of Zero Divisor Graph of a Ring Zn

Let Γ be a nontrivial connected graph, c:VΓ⟶ℕ be a vertex colouring of Γ, and Li be the colouring classes that resulted, where i=1,2,…,k. A metric colour code for a vertex a of a graph Γ is ca=da,L1,da,L2,…,da,Ln, where da,Li is the minimum distance between vertex a and vertex b in Li. If ca≠cb, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 2022-01, Vol.2022
Hauptverfasser: Mohammad, Husam Qasem, Ibrahem, Shaymaa Haleem, Khaleel, Luma Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Γ be a nontrivial connected graph, c:VΓ⟶ℕ be a vertex colouring of Γ, and Li be the colouring classes that resulted, where i=1,2,…,k. A metric colour code for a vertex a of a graph Γ is ca=da,L1,da,L2,…,da,Ln, where da,Li is the minimum distance between vertex a and vertex b in Li. If ca≠cb, for any adjacent vertices a and b of Γ, then c is called a metric colouring of Γ as well as the smallest number k satisfies this definition which is said to be the metric chromatic number of a graph Γ and symbolized μΓ. In this work, we investigated a metric colouring of a graph ΓZn and found the metric chromatic number of this graph, where ΓZn is the zero-divisor graph of ring Zn.
ISSN:0161-1712
1687-0425
DOI:10.1155/2022/9069827