Solution of the modified Helmholtz equation using mixed boundary conditions in an equilateral triangle

The modified Helmholtz equation qxx+qyy−4β2q=0, is one of the basic equations of classical mathematical physics. In this paper we have obtained the solution of the boundary-value problems for the modified Helmholtz equation in an equilateral triangle. An additional mixed boundary condition related t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2024-09, Vol.11, p.100895, Article 100895
Hauptverfasser: Gadagkar, Pratul, Kendre, Subhash, Paratane, Pooja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The modified Helmholtz equation qxx+qyy−4β2q=0, is one of the basic equations of classical mathematical physics. In this paper we have obtained the solution of the boundary-value problems for the modified Helmholtz equation in an equilateral triangle. An additional mixed boundary condition related to the symmetry of the solution is taken into consideration. We have analysed the Global relation and only used the algebraic techniques to obtain the explicit solution of modified Helmholtz equation bypassing the Riemann Hilbert approach. This solution is applied to the problem of diffusion-limited coalescence, A+A⇌A.
ISSN:2666-8181
2666-8181
DOI:10.1016/j.padiff.2024.100895