Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
Let L = − Δ H n + V be a Schrödinger operator on the Heisenberg group H n , where the nonnegative potential V belongs to the reverse Hölder class R H q 1 for some q 1 ≥ Q / 2 , and Q is the homogeneous dimension of H n . Let b belong to a new Campanato space Λ ν θ ( ρ ) , and let I β L be the fracti...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2018-08, Vol.2018 (1), p.1-14, Article 273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
L
=
−
Δ
H
n
+
V
be a Schrödinger operator on the Heisenberg group
H
n
, where the nonnegative potential
V
belongs to the reverse Hölder class
R
H
q
1
for some
q
1
≥
Q
/
2
, and
Q
is the homogeneous dimension of
H
n
. Let
b
belong to a new Campanato space
Λ
ν
θ
(
ρ
)
, and let
I
β
L
be the fractional integral operator associated with
L
. In this paper, we study the boundedness of the commutators
[
b
,
I
β
L
]
with
b
∈
Λ
ν
θ
(
ρ
)
on central generalized Morrey spaces
L
M
p
,
φ
α
,
V
(
H
n
)
, generalized Morrey spaces
M
p
,
φ
α
,
V
(
H
n
)
, and vanishing generalized Morrey spaces
V
M
p
,
φ
α
,
V
(
H
n
)
associated with Schrödinger operator, respectively. When
b
belongs to
Λ
ν
θ
(
ρ
)
with
θ
>
0
,
0
<
ν
<
1
and
(
φ
1
,
φ
2
)
satisfies some conditions, we show that the commutator operator
[
b
,
I
β
L
]
is bounded from
L
M
p
,
φ
1
α
,
V
(
H
n
)
to
L
M
q
,
φ
2
α
,
V
(
H
n
)
, from
M
p
,
φ
1
α
,
V
(
H
n
)
to
M
q
,
φ
2
α
,
V
(
H
n
)
, and from
V
M
p
,
φ
1
α
,
V
(
H
n
)
to
V
M
q
,
φ
2
α
,
V
(
H
n
)
,
1
/
p
−
1
/
q
=
(
β
+
ν
)
/
Q
. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-018-1730-8 |