Bio-Inspired Nanocarriers Derived from Stem Cells and Their Extracellular Vesicles for Targeted Drug Delivery
With their seemingly limitless capacity for self-improvement, stem cells have a wide range of potential uses in the medical field. Stem-cell-secreted extracellular vesicles (EVs), as paracrine components of stem cells, are natural nanoscale particles that transport a variety of biological molecules...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2023-07, Vol.15 (7), p.2011 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With their seemingly limitless capacity for self-improvement, stem cells have a wide range of potential uses in the medical field. Stem-cell-secreted extracellular vesicles (EVs), as paracrine components of stem cells, are natural nanoscale particles that transport a variety of biological molecules and facilitate cell-to-cell communication which have been also widely used for targeted drug delivery. These nanocarriers exhibit inherent advantages, such as strong cell or tissue targeting and low immunogenicity, which synthetic nanocarriers lack. However, despite the tremendous therapeutic potential of stem cells and EVs, their further clinical application is still limited by low yield and a lack of standardized isolation and purification protocols. In recent years, inspired by the concept of biomimetics, a new approach to biomimetic nanocarriers for drug delivery has been developed through combining nanotechnology and bioengineering. This article reviews the application of biomimetic nanocarriers derived from stem cells and their EVs in targeted drug delivery and discusses their advantages and challenges in order to stimulate future research. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics15072011 |