A Syntactic Proof of the Decidability of First-Order Monadic Logic

Decidability of monadic first-order classical logic was established by Löwenheim in 1915. The proof made use of a semantic argument and a purely syntactic proof has never been provided. In the present paper we introduce a syntactic proof of decidability of monadic first-order logic in innex normal f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Section of Logic 2024-01, Vol.53 (2), p.223-244
Hauptverfasser: Orlandelli, Eugenio, Tesi, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decidability of monadic first-order classical logic was established by Löwenheim in 1915. The proof made use of a semantic argument and a purely syntactic proof has never been provided. In the present paper we introduce a syntactic proof of decidability of monadic first-order logic in innex normal form which exploits G3-style sequent calculi. In particular, we introduce a cut- and contraction-free calculus having a (complexity-optimal) terminating proof-search procedure. We also show that this logic can be faithfully embedded in the modal logic T.
ISSN:0138-0680
2449-836X
DOI:10.18778/0138-0680.2024.03