Oncogenic structural aberration landscape in gastric cancer genomes

Structural variants (SVs) are responsible for driver events in gastric cancer (GC); however, their patterns and processes remain poorly understood. Here, we examine 170 GC whole genomes to unravel the oncogenic structural aberration landscape in GC genomes and identify six rearrangement signatures (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-06, Vol.14 (1), p.3688-3688, Article 3688
Hauptverfasser: Saito-Adachi, Mihoko, Hama, Natsuko, Totoki, Yasushi, Nakamura, Hiromi, Arai, Yasuhito, Hosoda, Fumie, Rokutan, Hirofumi, Yachida, Shinichi, Kato, Mamoru, Fukagawa, Akihiko, Shibata, Tatsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural variants (SVs) are responsible for driver events in gastric cancer (GC); however, their patterns and processes remain poorly understood. Here, we examine 170 GC whole genomes to unravel the oncogenic structural aberration landscape in GC genomes and identify six rearrangement signatures (RSs). Non-random combinations of RSs elucidate distinctive GC subtypes comprising one or a few dominant RS that are associated with specific driver events ( BRCA1/2 defects, mismatch repair deficiency, and TP53 mutation) and epidemiological backgrounds. Twenty-seven SV hotspots are identified as GC driver candidates. SV hotspots frequently constitute complexly clustered SVs involved in driver gene amplification, such as ERBB2 , CCNE1 , and FGFR2 . Further deconstruction of the locally clustered SVs uncovers amplicon-generating profiles characterized by super-large SVs and intensive segmental amplifications, contributing to the extensive amplification of GC oncogenes. Comprehensive analyses using adjusted SV allele frequencies indicate the significant involvement of extra-chromosomal DNA in processes linked to specific RSs. Gastric cancers (GC) are driven by genomic alterations, but the underlying molecular mechanisms remain unclear. Here, the authors analyse the structural rearrangement landscape of 170 GCs using whole-genome sequencing, identify recurrent structural variant hotspots and find oncogene amplicons driven by extrachromosomal DNA.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-39263-1