Improvement of PMSG-Based Wind Energy Conversion System Using Developed Sliding Mode Control

In recent years, regulating a wind energy conversion system (WECS) under fluctuating wind speed and enhancing the quality of the electricity provided to the grid has become a hard challenge for many academics. The current research provides a better control strategy to decrease the occurrence of chat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-03, Vol.15 (5), p.1625
Hauptverfasser: Majout, Btissam, Bossoufi, Badre, Bouderbala, Manale, Masud, Mehedi, Al-Amri, Jehad F., Taoussi, Mohammed, El Mahfoud, Mohammed, Motahhir, Saad, Karim, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, regulating a wind energy conversion system (WECS) under fluctuating wind speed and enhancing the quality of the electricity provided to the grid has become a hard challenge for many academics. The current research provides a better control strategy to decrease the occurrence of chattering phenomena. Combined with the Maximum Power Point Tracking (MPPT) strategy and a pitch angle control, the control is possible to increase the performance and the efficiency of the Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System. This study attempts initially to regulate the generator and the grid side converter to track the wind speed reference established by the MPPT algorithm. And secondly, to relieve the chattering problem associated with the conventional sliding mode control (CSMC), the proposed sliding mode control (PSMC) is based on a novel smooth continuous switching control. Besides, the suggested sliding mode control stability is confirmed using Lyapunov’s stability function. The complete system was evaluated in the MATLAB/Simulink (MathWorks, Natick, MA, USA) environment using a 2 MW PMSG’s power, under random fluctuations in the wind speed to show the suggested approach’s efficiency and robustness, which was then compared to the CSMC and other common approaches available in the literature. The simulation results reveal that the recommended sliding mode control approach delivers good speed, accuracy, stability, and output current’s ripple.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15051625