Fourier-Bessel beams of finite energy

In this paper, we consider a new type of Bessel beams having Fourier-invariance property and, therefore, called Fourier-Bessel beams. In contrast to the known Bessel beams, these beams have weak side lobes. Analytical expressions for the complex amplitude of the proposed field in the initial plane o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kompʹûternaâ optika 2021-07, Vol.45 (4), p.506-511
Hauptverfasser: Kotlyar, V.V., Kovalev, A.A., Kalinkina, D.S., Kozlova, E.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a new type of Bessel beams having Fourier-invariance property and, therefore, called Fourier-Bessel beams. In contrast to the known Bessel beams, these beams have weak side lobes. Analytical expressions for the complex amplitude of the proposed field in the initial plane of the source and in the far field region have been obtained. It is shown that the proposed Fourier-Bessel beams have a finite energy, although they do not have a Gaussian envelope. Their complex amplitude is proportional to a fractional-order Bessel function (an odd integer divided by 6) in the initial plane and in the Fraunhofer zone. The Fourier-Bessel modes have a smaller internal dark spot compared to the Laguerre-Gauss modes with a zero radial index. The proposed beams can be generated with a spatial light modulator and may find uses in telecommunications, interferometry, and the capture of metal microparticles.
ISSN:0134-2452
2412-6179
DOI:10.18287/2412-6179-CO-864