Deep brain activities can be detected with magnetoencephalography
The hippocampus and amygdala are key brain structures of the medial temporal lobe, involved in cognitive and emotional processes as well as pathological states such as epilepsy. Despite their importance, it is still unclear whether their neural activity can be recorded non-invasively. Here, using s...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-02, Vol.10 (1), p.971-971, Article 971 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hippocampus and amygdala are key brain structures of the medial temporal lobe, involved in cognitive and emotional processes as well as pathological states such as epilepsy. Despite their importance, it is still unclear whether their neural activity can be recorded non-invasively. Here, using simultaneous intracerebral and magnetoencephalography (MEG) recordings in patients with focal drug-resistant epilepsy, we demonstrate a direct contribution of amygdala and hippocampal activity to surface MEG recordings. In particular, a method of blind source separation, independent component analysis, enabled activity arising from large neocortical networks to be disentangled from that of deeper structures, whose amplitude at the surface was small but significant. This finding is highly relevant for our understanding of hippocampal and amygdala brain activity as it implies that their activity could potentially be measured non-invasively.
Magnetoencephalography (MEG) is a non-invasive method of measuring neural activity but the hippocampus and amygdala are difficult to measure with MEG because of their deep localization. Here, the authors show with simultaneous MEG and invasive recordings that hippocampus and amygdala activity can be retrieved from the surface. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-08665-5 |