Effects of the IDH1 R132H Mutation on the Energy Metabolism: A Comparison between Tissue and Corresponding Primary Glioma Cell Cultures

The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abund...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2022-02, Vol.7 (4), p.3568-3578
Hauptverfasser: Dekker, Lennard J. M, Verheul, Cassandra, Wensveen, Nicky, Leenders, William, Lamfers, Martine L. M, Leenstra, Sieger, Luider, Theo M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes, appropriate glioma models are required that accurately mimic in vivo metabolism. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap-frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma primary cell cultures. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as three-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c06121