Origami-based integration of robots that sense, decide, and respond

Origami-inspired engineering has enabled intelligent materials and structures to process and react to environmental stimuli. However, it is challenging to achieve complete sense-decide-act loops in origami materials for autonomous interaction with environments, mainly due to the lack of information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-04, Vol.14 (1), p.1553-1553, Article 1553
Hauptverfasser: Yan, Wenzhong, Li, Shuguang, Deguchi, Mauricio, Zheng, Zhaoliang, Rus, Daniela, Mehta, Ankur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Origami-inspired engineering has enabled intelligent materials and structures to process and react to environmental stimuli. However, it is challenging to achieve complete sense-decide-act loops in origami materials for autonomous interaction with environments, mainly due to the lack of information processing units that can interface with sensing and actuation. Here, we introduce an integrated origami-based process to create autonomous robots by embedding sensing, computing, and actuating in compliant, conductive materials. By combining flexible bistable mechanisms and conductive thermal artificial muscles, we realize origami multiplexed switches and configure them to generate digital logic gates, memory bits, and thus integrated autonomous origami robots. We demonstrate with a flytrap-inspired robot that captures ‘living prey’, an untethered crawler that avoids obstacles, and a wheeled vehicle that locomotes with reprogrammable trajectories. Our method provides routes to achieve autonomy for origami robots through tight functional integration in compliant, conductive materials. Origami-inspired engineering has enabled intelligent materials and structures to react to environments, yet a complete sense-decide-act autonomous loop is still challenging. Yan et al. introduce autonomous origami robots by embedding sensing, computing, and actuating in compliant, conductive materials.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37158-9