Underwater Target Detection Lightweight Algorithm Based on Multi-Scale Feature Fusion
The performance of underwater target detection algorithms is affected by poor imaging quality in underwater environments. Due to the arithmetic power limitation of underwater devices, existing deep learning networks are unable to provide efficient detection processes with high detection accuracy. Li...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and engineering 2023-02, Vol.11 (2), p.320 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of underwater target detection algorithms is affected by poor imaging quality in underwater environments. Due to the arithmetic power limitation of underwater devices, existing deep learning networks are unable to provide efficient detection processes with high detection accuracy. Lightweight CNN models have been actively applied for underwater environment detection, yet their lite feature fusion networks cannot provide effective fusion effects and reduce the detection accuracy. In this paper, a lightweight algorithm based on multi-scale feature fusion was proposed, with the model parameters greatly reduced, improving the target detection accuracy. The forward propagation memory overhead is reduced by using multi-scale shared convolutional kernels and pooling operations to co-construct the query matrix in the Tansformer encoding stage. Then, the feature fusion path is optimized in order to enhance the connection of multi-scale features. A multiscale feature adaptive fusion strategy is used to enhance the detection performance and reduce the dependence on the complex feature extraction network. The feature extraction network is also reparameterized to simplify the operation. Using the UPRC offshore dataset for validation, the study results have demonstrated that the statistical mAP metrics validate the detection accuracy. Compared with SSD, RetinaNet and YOLOv5-s improved by 13%, 8.6%, and 0.8%, while the number of parameters decreased by 76.09%, 89.74%, and 87.67%. In addition, compared with the YOLOv5-lite model algorithm with the same parameter volume, the mAP is improved by 3.8%, which verifies the accuracy and efficiency of the algorithm in this paper. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse11020320 |